Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy.

نویسندگان

  • Régis Decker
  • Yang Wang
  • Victor W Brar
  • William Regan
  • Hsin-Zon Tsai
  • Qiong Wu
  • William Gannett
  • Alex Zettl
  • Michael F Crommie
چکیده

The use of boron nitride (BN) as a substrate for graphene nanodevices has attracted much interest since the recent report that BN greatly improves the mobility of charge carriers in graphene compared to standard SiO(2) substrates. We have explored the local microscopic properties of graphene on a BN substrate using scanning tunneling microscopy. We find that BN substrates result in extraordinarily flat graphene layers that display microscopic Moiré patterns arising from the relative orientation of the graphene and BN lattices. Gate-dependent dI/dV spectra of graphene on BN exhibit spectroscopic features that are sharper than those obtained for graphene on SiO(2). We observe a significant reduction in local microscopic charge inhomogeneity for graphene on BN compared to graphene on SiO(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MoS 2 MoS2: choice substrate for accessing and tuning the electronic properties of graphene.

One of the enduring challenges in graphene research and applications is the extreme sensitivity of its charge carriers to external perturbations, especially those introduced by the substrate. The best available substrates to date, graphite and hexagonal boron nitride (h-BN), still pose limitations: graphite being metallic does not allow gating, while both h-BN and graphite, having lattice struc...

متن کامل

Covalent coupling via dehalogenation on Ni(111) supported boron nitride and graphene.

Polymerization of 1,3,5-tris(4-bromophenyl)benzene via dehalogenation on graphene and hexagonal boron nitride is investigated by scanning tunneling microscopy experiments and density functional theory calculations. This work reveals how the interactions between molecules and graphene or h-BN grown on Ni(111) govern the surface-confined synthesis of polymers through C-C coupling.

متن کامل

Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 × 3) : a scanning tunneling microscopy study

We present an investigation of the atomic and electronic structure of graphene monolayer islands on the 6H-SiC(0001)(3×3) (SiC(3×3)) surface reconstruction using scanning tunneling microscopy (STM) and spectroscopy (STS). The orientation of the graphene lattice changes from one island to the other. In the STM images, this rotational disorder gives rise to various superlattices with periods in t...

متن کامل

Point defects on graphene on metals.

Understanding the coupling of graphene with its local environment is critical to be able to integrate it in tomorrow's electronic devices. Here we show how the presence of a metallic substrate affects the properties of an atomically tailored graphene layer. We have deliberately introduced single carbon vacancies on a graphene monolayer grown on a Pt(111) surface and investigated its impact in t...

متن کامل

Visualizing local doping effects of individual water clusters on gold(111)-supported graphene.

The local charge carrier density of graphene can exhibit significant and highly localized variations that arise from the interaction between graphene and the local environment, such as adsorbed water, or a supporting substrate. However, it has been difficult to correlate such spatial variations with individual impurity sites. By trapping (under graphene) nanometer-sized water clusters on the at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 6  شماره 

صفحات  -

تاریخ انتشار 2011